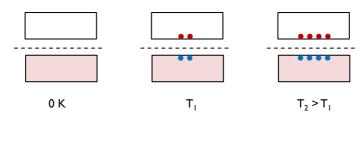
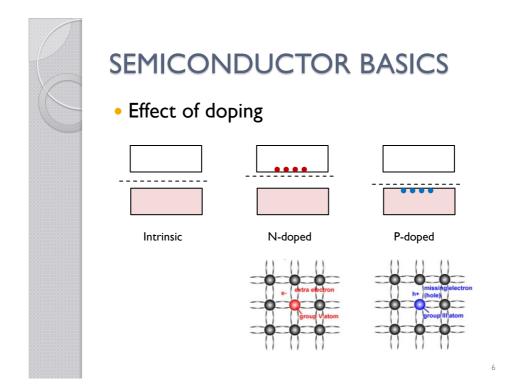
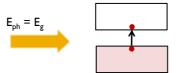

PV FUNDAMENTALS

- Semiconductor basics
- pn junction
- Solar cell operation
- Design of silicon solar cell



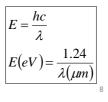



• Effect of temperature

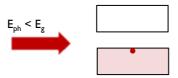


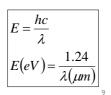
• **Absorption of light** depends on the energy of the photon (wavelength)

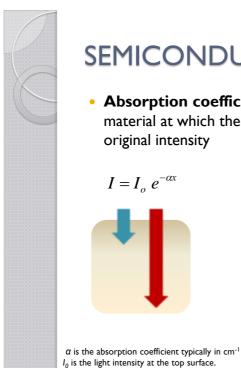




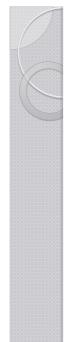
SEMICONDUCTOR BASICS


• **Absorption of light** depends on the energy of the photon (wavelength)

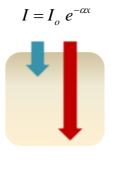


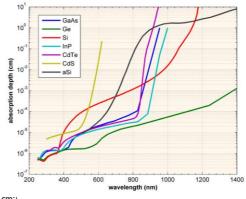


• Absorption of light depends on the energy of the photon (wavelength)



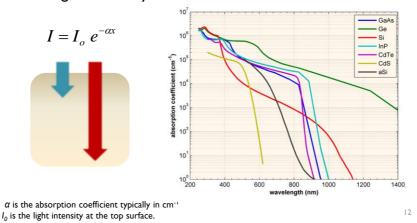
SEMICONDUCTOR BASICS


• Absorption coefficient [cm⁻¹]: the distance into the material at which the light drops to about 1/e of its original intensity


$$I = I_o e^{-\alpha x}$$

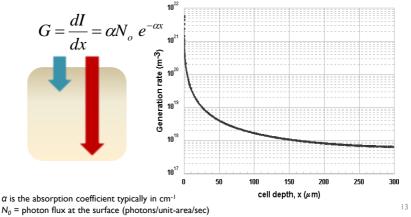
 $E = \frac{hc}{\lambda}$ $E(eV) = \frac{1.24}{\lambda(\mu m)}$

• Absorption coefficient [cm⁻¹]: the distance into the material at which the light drops to about I/e of its original intensity



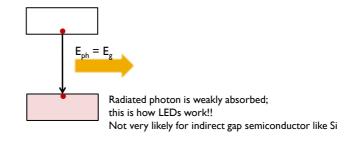

П

 α is the absorption coefficient typically in cm $^{-1}$ l_0 is the light intensity at the top surface.


• Absorption coefficient [cm⁻¹]: the distance into the material at which the light drops to about 1/e of its original intensity

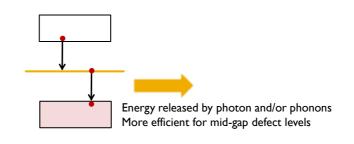
PV FUNDAMENTALS

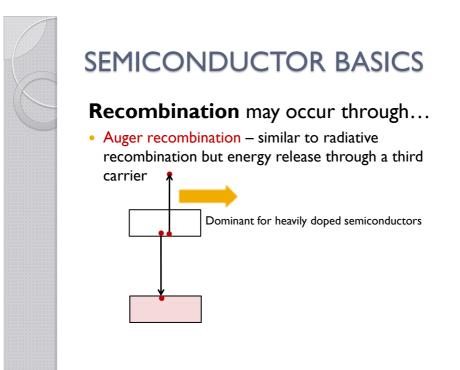
• The **generation rate** gives the number of electrons generated at each point in the device due to the absorption of photons.



PV FUNDAMENTALS

Recombination may occur through...

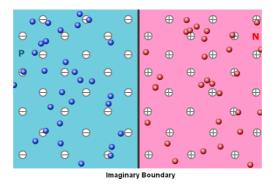

• Radiative recombination - an electron directly combines with a hole in the conduction band and releases a photon



Recombination may occur through...

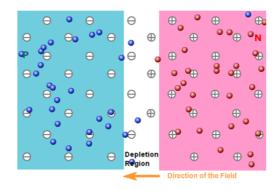
• Shockley-Read-Hall recombination – 2-step process: an electron is trapped in a defect level

16

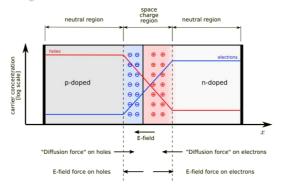

Recombination is characterized by...

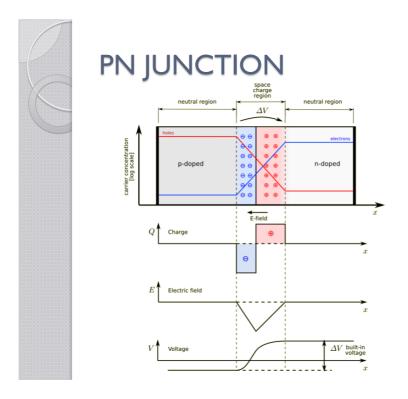
- Recombination rate
- Minority carrier lifetime how long a carrier is likely to stay around for before recombining
- Diffusion length average distance a carrier can move from point of generation until it recombines

$$\tau = \frac{\Delta n}{R} \quad L = \sqrt{D\tau}$$

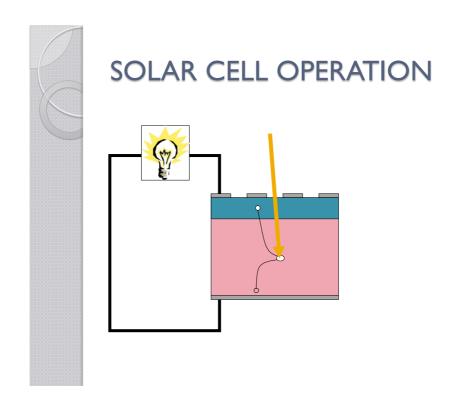

PN JUNCTION

18


PN JUNCTION

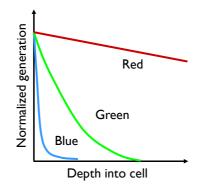


PN JUNCTION



Basic steps:

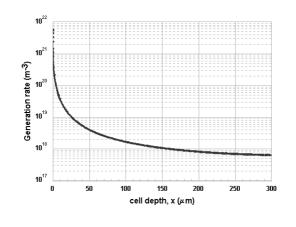
• the generation of light-generated carriers;


21

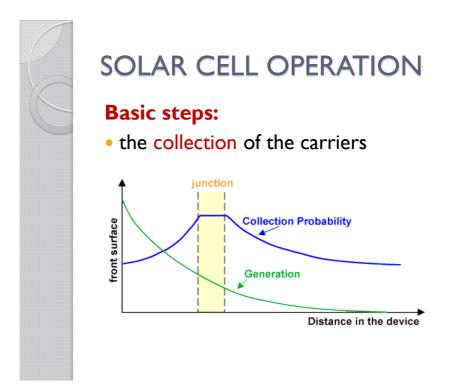
- the collection of the light-generated carries to generate a current;
- the generation of a voltage across the solar cell; and
- the dissipation of power in the load and in parasitic resistances.

Basic steps:

• the generation of light-generated carriers

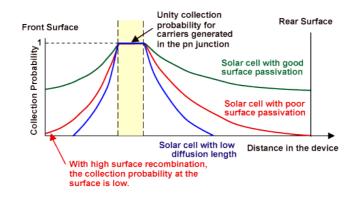


24



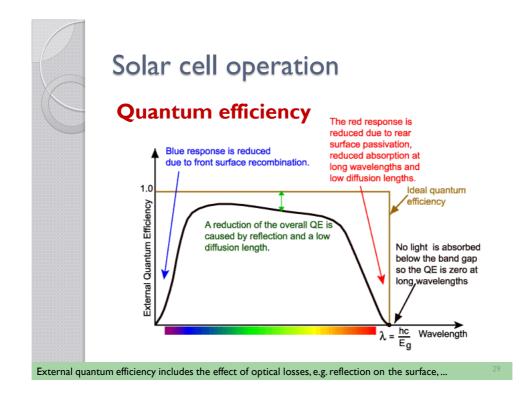
Basic steps:

• the generation of light-generated carriers

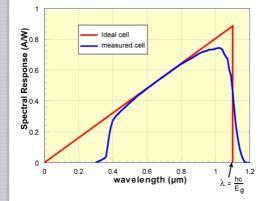


Basic steps:

• the collection of the carriers



Solar cell operation

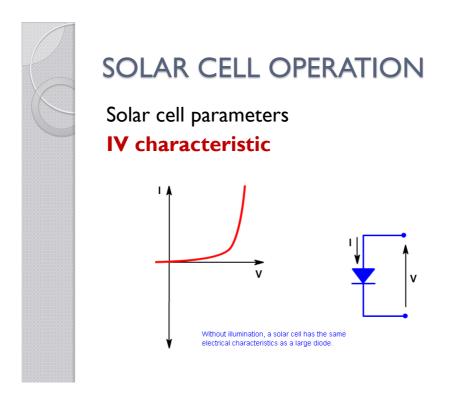

Quantum efficiency

Ratio of the number of carriers collected to the number of photons of a given energy incident

Spectral response

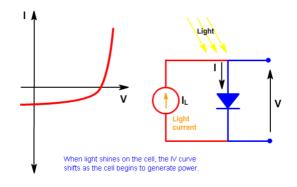
Ratio of the **current** generated by the solar cell to the **power** incident on the solar cell

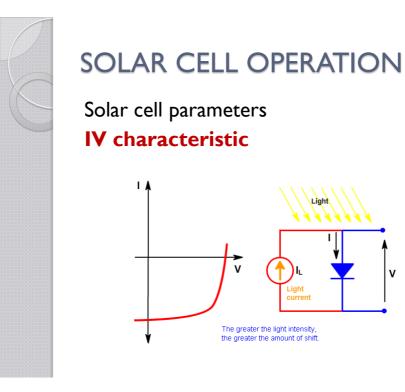
Spectral Response (SR) is measured


Quantum Efficiency (QE) is calculated from SR:

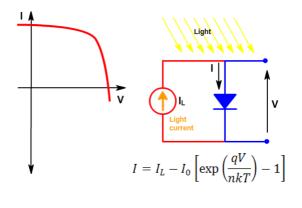
$$SR = \frac{q\lambda}{hc}QE$$

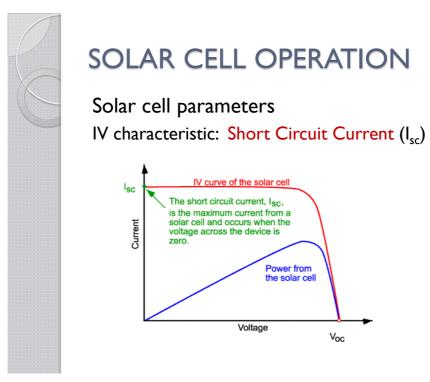
Solar cell parameters IV characteristic


= diode + light generated current

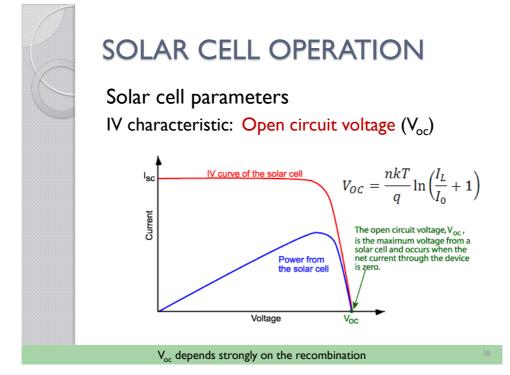

31

Solar cell parameters IV characteristic



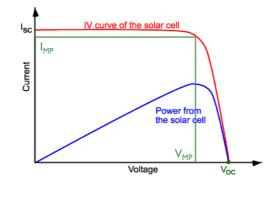


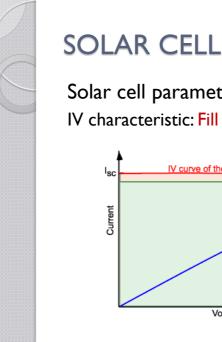
Solar cell parameters IV characteristic


36

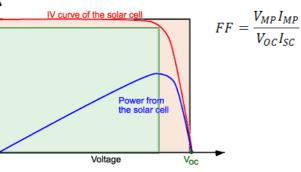
Solar cell parameters

IV characteristic: Short Circuit Current (I_{sc})


- Area of the solar cell (common to use J_{sc} in mA/cm²)
- Incident flux (i.e. number of photons)
- Spectrum incident light
- Optical properties of the solar cell
- Collection probability, e.g. diffusion length


$$J_{SC} = qG(L_n + L_p)$$

Solar cell parameters


IV characteristic: Maximum power

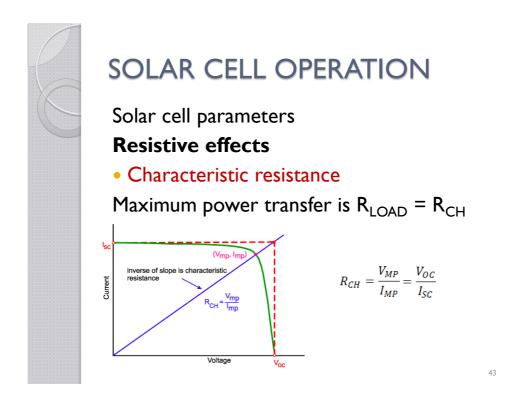
SOLAR CELL OPERATION

Solar cell parameters IV characteristic: Fill factor (FF)

40

Solar cell parameters

Efficiency (η) is the fraction of incident power which is converted to electricity

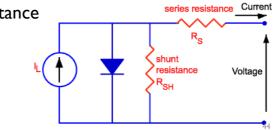

 $P_{max} = V_{OC}I_{SC}FF \qquad \qquad \eta = \frac{V_{OC}I_{SC}FF}{P_{in}}$

SOLAR CELL OPERATION

Solar cell parameters

Resistive effects

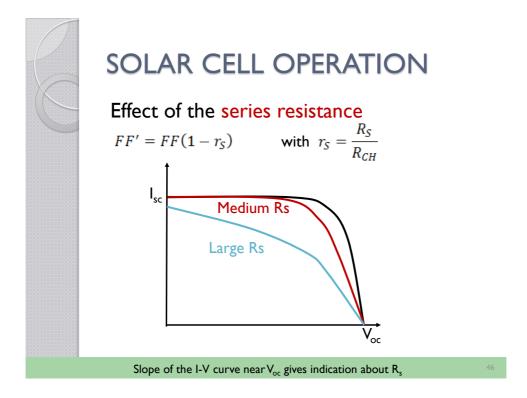
- Characteristic resistance
- Parasitic resistance

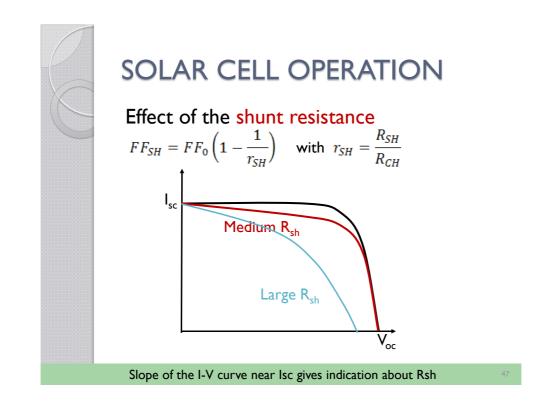


Solar cell parameters

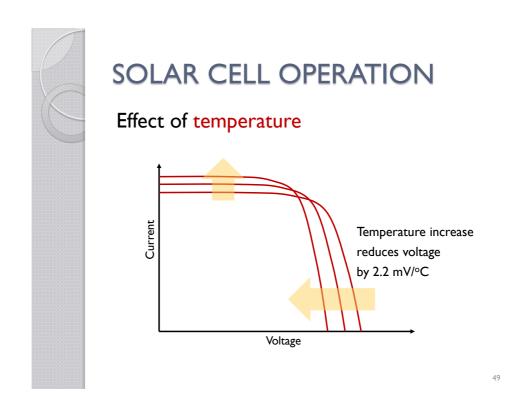
Resistive effects

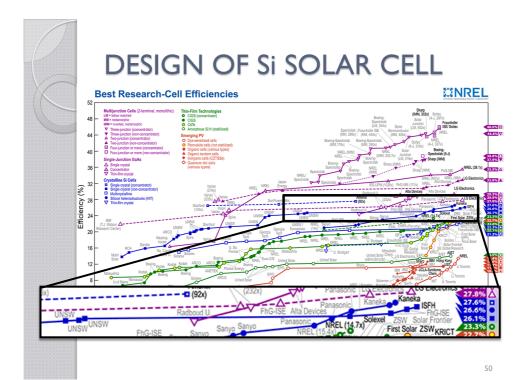
- Characteristic resistance
- Parasitic resistance
 - Series resistance
 - Shunt resistance

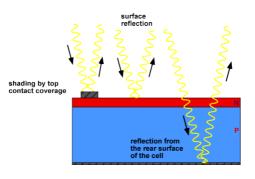



Solar cell parameters

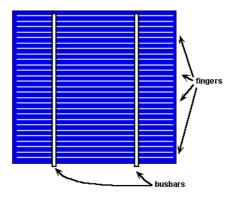
Resistive effects

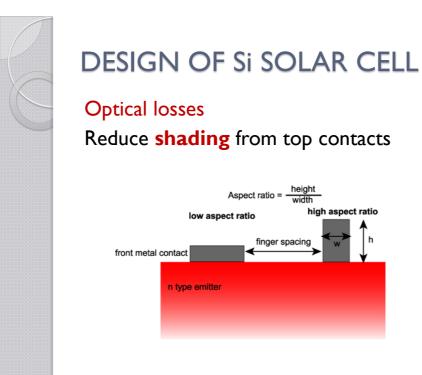

- Characteristic resistance
- Parasitic resistance
 - Series resistance
 - Shunt resistance


$$I = I_L - I_0 \exp\left[\frac{q(V - IR_S)}{nkT}\right] - \frac{V + IR_S}{R_{SH}}$$



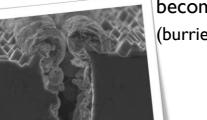
Optical losses - light which could have generated an electron-hole pair, but does not, because the light is reflected from the front surface, or because it is not absorbed in the solar cell.




DESIGN OF Si SOLAR CELL

- **Optical losses** light which could have generated an electron-hole pair, but does not, because the light is reflected from the front surface, or because it is not absorbed in the solar cell.
- Top contact shading
- Top surface reflection
- Not enought optical path for photon absorption

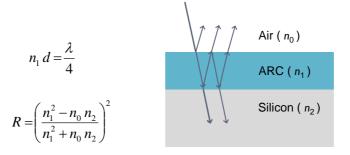
Optical losses Reduce **shading** from top contacts



54

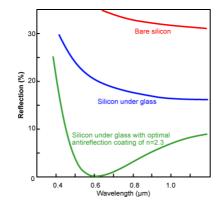
Optical losses

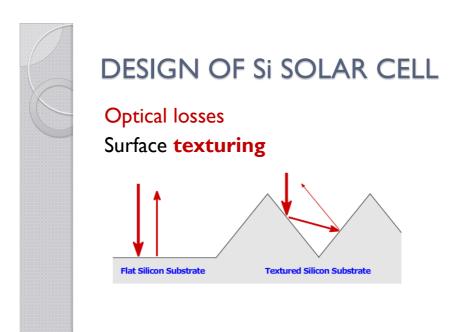
Reduce shading from top contacts


- May increase series resistance
- Other emitter contact concepts

becoming fashionable (burried or back contacts)

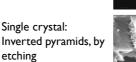
DESIGN OF Si SOLAR CELL

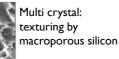

Optical losses Anti-reflective coating



Optical losses

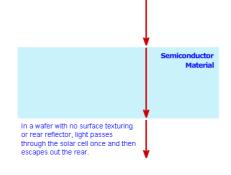
Anti-reflective coating

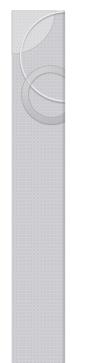

58


Optical losses Surface **texturing**

Single crystal: Random pyramids, by etching

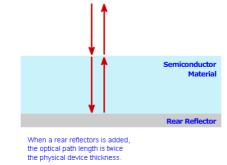
Multi crystal: texturing by photolithography

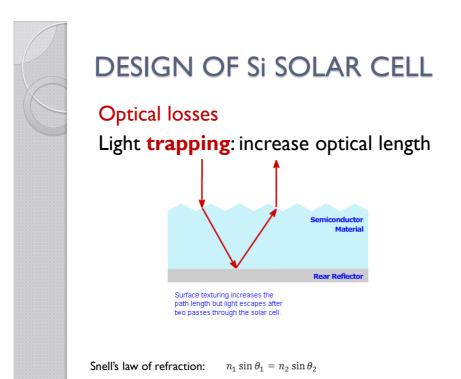

59

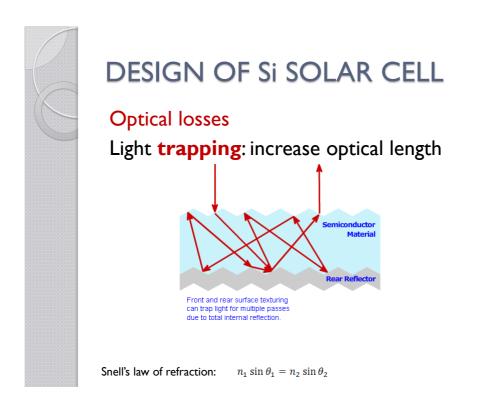

C

DESIGN OF Si SOLAR CELL

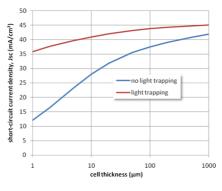
Optical losses


Light trapping: increase optical length




Optical losses

Light trapping: increase optical length


62

Optical losses

Light trapping: increase optical length

Snell's law of refraction:

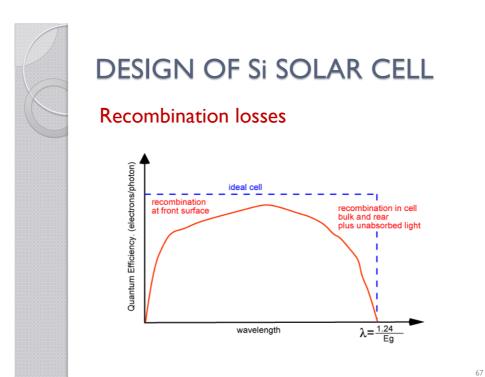
 $n_1\sin\theta_1=n_2\sin\theta_2$

Optical losses

In summary:

- Reduce front contact coverage
- Anti-reflective coating
- Surface texturing
- Light trapping

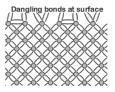
DESIGN OF Si SOLAR CELL


65

66

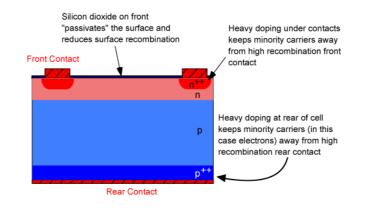
Recombination losses

Optimal conditions:


- the carrier must be generated within a diffusion length of the junction;
- the carrier must be generated closer to the junction than to *hazardous* recombination sites (unpassivated surface, grain boundary,...)

Recombination losses: Surface **passivation**

 Reducing the number of dangling bonds by growing a SiO₂ or SiN thin film on the surface (also for anti-reflection coating; notice that it is an electric insulator)



Increasing doping, creating a repelling field

(decreases diffusion length thus not suitable for charge collection region; useful closer to contacts, e.g. Back Surface Field - BSF)

Recombination losses: Surface **passivation**

69

DESIGN OF Si SOLAR CELL

TABLE 1 Confirmed single-junction terrestrial cell and submodule efficiencies measured under the global AM1.5 spectrum (1000 W/m²) at 25°C (IEC 60904-3: 2008, ASTM G-173-03 global). New entries in bold type

	Efficiency	Area	Voc	J _{sc}	Fill Factor	Test Centre	
Classification	(%)	(cm ²)	(V)	(mA/cm ²)	(%)	(date)	Description
Silicon							
Si (crystalline cell)	26.7 ± 0.5	79.0 (da)	0.738	42.65 ^a	84.9	AIST (3/17)	Kaneka, n-type rear IBC ⁵
Si (multicrystalline cell)	21.9 ± 0.4^{b}	4.0003 (t)	0.6726	40.76 ^a	79.7	FhG-ISE (2/17)	FhG-ISE, n-type ⁶
Si (thin transfer submodule)	21.2 ± 0.4	239.7 (ap)	0.687 ^c	38.50 ^{c,d}	80.3	NREL (4/14)	Solexel (35 µm thick) ⁷
Si (thin film minimodule)	10.5 ± 0.3	94.0 (ap)	0.492 ^c	29.7 ^c	72.1	FhG-ISE (8/07) ^e	CSG Solar (<2 µm on glass) ⁸

 TABLE 4
 "Notable exceptions": "Top dozen" confirmed cell and module results, not class records measured under the global AM1.5 spectrum (1000 Wm⁻²) at 25°C (IEC 60904-3: 2008, ASTM G-173-03 global). New entries in bold type

Efficiency		Area	Voc	J _{sc}	Fill Factor	Test Centre		
Classification	(%)	(cm ²)	(V)	(mA/cm ²)	(%)	(date)		
Cells (silicon)								
Si (crystalline)	25.0 ± 0.5	4.00 (da)	0.706	42.7 ^a	82.8	Sandia (3/99) ^b	UNSW p-type PERC top/rear contacts40	
Si (crystalline)	$25.7 \pm 0.5^{\circ}$	4.017 (da)	0.7249	42.54 ^d	83.3	FhG-ISE (3/17)	FhG-ISE, n-type top/rear contacts ⁴¹	
Si (large)	26.6 ± 0.5	179.74 (da)	0.7403	42.5 ^d	84.7	FhG-ISE (11/16)	Kaneka, n-type rear IBC ⁵	
Si (multicrystalline)	21.3 ± 0.4	242.74 (t)	0.6678	39.80°	80.0	FhG-ISE (11/15)	Trina Solar, large p-type ⁴²	

(ap), aperture area; (t), total area; (da), designated illumination area

TABLE 1Confirmed single-junction terrestrial cell and submodule efficiencies measured under the global AM1.5 spectrum (1000 W/m²) at 25°C(IEC 60904-3: 2008, ASTM G-173-03 global). New entries in bold type

	Efficiency	Area	Voc	J _{sc}	Fill Factor	Test Centre	
Classification	(%)	(cm ²)	(V)	(mA/cm ²)	(%)	(date)	 Description
Silicon							
Si (crystalline cell)	26.7 ± 0.5	79.0 (da)	0.738	42.65 ^a	84.9	AIST (3/17)	Kaneka, n-type rear IBC ⁵
Si (multicrystalline cell)	21.9 ± 0.4^{b}	4.0003 (t)	0.6726	40.76 ^a	79.7	FhG-ISE (2/17)	FhG-ISE, n-type ⁶
Si (thin transfer submodule)	21.2 ± 0.4	239.7 (ap)	0.687 ^c	38.50 ^{c,d}	80.3	NREL (4/14)	Solexel (35 µm thick) ⁷
Si (thin film minimodule)	10.5 ± 0.3	94.0 (ap)	0.492 ^c	29.7 ^c	72.1	FhG-ISE (8/07)e	CSG Solar (<2 µm on glass)

TABLE 3 Confirmed terrestrial module efficiencies measured under the global AM1.5 spectrum (1000 W/m²) at a cell temperature of 25°C (IEC 60904-3: 2008, ASTM G-173-03 global). New entries in bold type

	Area	V _{oc}	sc	FF	Test Centre	
(%)	(cm ²)	(V)	(A)	(%)	(date)	Description
24.4 ± 0.5	13177 (da)	79.5	5.04 ^a	80.1	AIST (9/16)	Kaneka (108 cells) ⁵
19.9 ± 0.4	15143 (ap)	78.87	4.795 ^a	79.5	FhG-ISE (10/16)	Trina Solar (120 cells) ³³
	24.4 ± 0.5	24.4 ± 0.5 13177 (da)	24.4 ± 0.5 13177 (da) 79.5	24.4 ± 0.5 13177 (da) 79.5 5.04 ^a	24.4 ± 0.5 13177 (da) 79.5 5.04 ^a 80.1	24.4 ± 0.5 13177 (da) 79.5 5.04 ^a 80.1 AIST (9/16)

Solar cell efficiency tables (version 50) Martin A. Green et al

71

Next class...

- How to make a practical photovoltaic module
- Other (non-silicon) technologies

A new set of exercises. And check <u>http://pvcdrom.pveducation.org/</u>